年新人教版高中数学知识点总结必修

认证主体:靳**(实名认证)

IP属地:天津

下载本文档

1、2019年新人教版高中数学知识点总结高中数学必修1知识点第一章集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法N表示自然数集,N *或N菸示正整数集,Z表示整数集,Q表示有理数集,R表示实数集(3)集合与元素间的关系对象a与集合M的关系是a w M,或者a皂M ,两者必居其一. (4)集合的表示法自然语言法:用文字叙述的形式来描述集合.列举法:把集合中的元素一一列举出来,写在大括号内表示集合描述法: X| X具有的性质,其中X为集合的代表元素.图示法:用数轴或韦恩图来表示集合.(5)集合的分类含有有限个元素的集合叫做有限

2、集 .含有无限个元素的集合叫做无限集.不含有任何元素的集合叫做空集(._ ).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等名称记号意义性质示意图子集A£ B(或B m A)A中的任一元素都属于B(i)a2 a0三A若A B且BC,则AG C若A1 B且B= A,则A = BG)(或真子集A 二 B(或 BnA)丰A B ,且B中至少 有一元素不属于A(1) 0U A (A为非空子集)丰若A= B且B二C ,则AU C集合 相等A = BA中的任一元素都属 于B, B中的任一元素 都属于A(1)A 三 B(2)B 三 A5(7)已知集合A有n(n21)个元素,则它有2n个

3、子集,它有2n1个真子集,它有2n1个非空子集,它有2n 2非空真子集(8)交集、并集、补集【1.1.3】集合的基本运算名称记号意义性质示意图交集AnB x | x w A,且xw B(1)AA=A(2) Ap|0 =0(3)AQBS AaAB B9。)并集AljB x | x w A,或xw B(1)a!Ja=a(2)AJ。= A(3) a B 3 AAUB3 B:6)补集eU Ax| xU ,且x更 A1 Afi(U A) =02 aU (eu A) =U痴(AB) =( uA)U(?j B) 娜(AUB)=( uA)n(? B)【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝

4、对值的不等式的解法不等式解集| x|<a(a >0)x | -a < x < a| x|>a(a >0)x|x<-a 或 xa|ax+b|<c,|ax +b|>c(c>0)把ax+ b看成一个整体,化成|x|<a,|x|>a(a > 0)型不等式来求解(2) 一元二次不等式的解法判别式b = b2 -4ac >0 =0 <0二次函数2y=ax +bx + c(a0)的图象_10%JO#一元二次方程2一,一、ax +bx+c=0(a>0)的根-b ± Jb2 -4acx1,2 一2a(其中

5、x1 <x2)bx1 x2 _2a无实根2,一,一、ax +bx+c >0(a >0)的解集 x| x < x1 或 x A x2r b、x| x# 2aR2 .,.一,一、ax +bx+c<0(aA0)的解集x % < x < x200R 1.2 1函数及其表示 121 函数的概念 (1)函数的概念设A、B是两个非空的数集,如果按照某种对应法则 f,对于集合A中任何一个数x,在集合B 中都有唯一确定的数 f(x)和它对应,那么这样的对应(包括集合 A, B以及A到B的对应法则f ) 叫做集合A到B的一个函数,记作f : At B .函数的三要素:定义

6、域、值域和对应法则.只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法设a,b是两个实数,且a<b,满足aExEb的实数x的集合叫做闭区间,记做 a,b;满足 a <x <b的实数x的集合叫做开区间,记做 (a,b);满足ax<b,或a<xb的实数x的 集合叫做半开半闭区间,分别记做 a, b), (a,b;满足x之a, x > a, x w b, x < b的实数x的集 合分别记做a,"),(a,收),(-0o,b,(-°o,b) .注意:对于集合x|a<x<b与区间 (a,b), 前者a

7、可以大于或等于 b ,而后者必须a <b.(3)求函数的定义域时,一般遵循以下原则:f(x)是整式时,定义域是全体实数.f(x)是分式函数时,定义域是使分母不为零的一切实数.f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合.对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.y=tanx中,x#kn+(kwZ).2零(负)指数嘉的底数不能为零.若f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.对于求复合函数定义域问题, 一般步骤是:若已知f(x)的定义域为a,b,其复合函数fg(x)的定义域应

8、由不等式 a <g(x) <b解出.对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个 最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是 提问的角度不同.求函数值域与最值的常用方法:观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的 值域

9、或最值.判别式法:若函数 y = f (x)可以化成一个系数含有 y的关于x的二次方程2a(y)x +b(y)x+c(y) =0 ,则在a(y)#0时,由于x, y为实数,故必须有2& =b (y) -4a(y) c(y) >0,从而确定函数的值域或最值.不等式法:利用基本不等式确定函数的值域或最值.换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为 三角函数的最值问题.反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.数形结合法:利用函数图象或几何方法确定函数的值域或最值.函数的单调性法.122 函数的表示法(5)函

10、数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念设A、B是两个集合,如果按照某种对应法则f ,对于集合A中任何一个元素,在集合 B中都有唯一的元素和它对应,那么这样的对应(包括集合 A, B以及A到B的对应法则f )叫做集合 A到B的映射,记作f :At B .给定一个集合 A到集合B的映射,且a w A,bw B .如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.R1.31函数的基本

11、性质【1.3.1】单调性与最大(小)值(1)函数的单调性定义及判定方法函数的 性质定义图象判定方法函数的单调性如果对于属于定义域I内某个区间上的任意两个自变量 的值xi、x2,当xi< x 2时,者B 有f(x i)<f(x 2),那么就说 f(x)在这个区间上是增函数.1 yy=f(x), 下(x )/ f(x )(i)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增)(4)利用复合函数oXix 2x如果对于属于定义域I内某个区间上的任意两个自变量 的值xi、x2,当xi< x2时,者B 有f(x i)>f(x 2),那么就说 f(x)在这

12、个区间上是减函数.yf(X i)y=f(x)呼 .(D利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减)(4)利用复合函数ox ix 2x在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.对于复合函数y=fg(x),令u = g(x),若y=f(u)为增,u = g(x)为增,则y= fg(x)为增;若y = f (u)为减,u = g(x)为减,则y = f g(x)为增;若y = f (u)为 增,u=g(x)为减,则y = fg(x)为减;若y = f(u)为减,u = g(x)为增,则

13、y*y= fg(x)为减.a ,(2)打 V函数f (x) = x+(a > 0)的图象与性质xf (x)分别在(-00, -Va> J0)上为增函数,分别在一/a©、(0,Jai上为减函数.(3)最大(小)值定义一般地,设函数 y = f (x)的定义域为I ,如果存在实数 M满足:(1)对于任意的xw I ,都有 f(x) <M ;(2)存在x0 W I ,使得f (x0) =M .那么,我们称 M是函数f (x)的最大值,记作fmax(X)= M .一般地,设函数 y = f(x)的定义域为I ,如果存在实数 m满足:(1)对于任意的xw I ,都有f (x)

14、至m ; (2)存在x0 w I ,使得f (x0) = m .那么,我们称 m是函数f (x)的最小值,记作fmax(x) = m .【1.3.2 奇偶性(4)函数的奇偶性定义及判定方法函数的 性质定义图象判定方法函数的奇偶性如果对于函数f(x)定义域内 任意一个x,都有f(二x)=- f(x).,那么函数f(x)叫做奇酉 数.-a(-* f -a)(a. f (a)0 aK(1)利用定义(要先 判断定义域是否关于 原点对称)(2)利用图象(图象 关于原点对称)如果对于函数f(x)定义域内 任意一个x,都有f(二x)= f(x), 那么函数f(x)叫做偶函数.¥(-a. f (-a

15、)工1 (a, f )(1)利用定义(要先 判断定义域是否关于 原点对称)(2)利用图象(图象 关于y轴对称)-a。la ,若函数f(x)为奇函数,且在x = 0处有定义,则f (0) =0.奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或 奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.R补充知识1函数的图象(1)作图利用描点法作图:确定函数的定义域;化解函数解析式;讨论函数的性质(奇偶性、单调性);画出函数的图象.利用基本函数图象的变换作图:要准

16、确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、募函数、三角函数等各种基本7初等函数的图象.平移变换y = f(x) hh,左移h个单位y = f (x h)9y= f(x) -kkOMJ/k|WB T y = f (x) + k伸缩变换y = f (x) 071?f'T y = f 侬 x),0 :A1y = f(x) a 1,伸 y =Af(x)对称变换xf xx 轴r , Xy = f(x)y = -f (x)y = f3y轴 > y = f(-x)y = f(x)y = -f(-x)r z x直线丫二1 -1z y = f (x)y = f (x)>y =

17、 f (I x|)去掉y轴左边图象f (x) 保雷萨防迈1象;邛柞其关于一河对称图象一、,、保留x轴上方图象、,一、八|f(x)将所下方图象翻折工丢T y | f (x) |(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义 域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.(3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了 “形”的直观性,它是探求解题途径, 获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章基本初等函数(I )R2.1 1指数函数【2.1.1】指数与指数哥的运算(1)根式的概念如果xn =a

18、, aw R,x w R, n>1,且n N +,那么x叫做a的n次方根.当n是奇数时,a的n次方根用符号n/a表示;当n是偶数时,正数a的正的n次方根用符号n/a表示,负的n次方根用符号一n/a表示;0的n次方根是0;负数a没有n次方根.式子 石叫做根式,这里n叫做根指数,a叫做被开方数.当n为奇数时,a为任意实数;当n为偶数时,a之0.根式的性质:(n/l) n=a;当n为奇数时,van = a ;当n为偶数时,(a-0)(a :二 0)mn:-m ,正数的正分数指数累的意乂是:an = Ja (a>0,m,nw N+且n>1). 0的正分数指数嘉等于0.m 1 m 1

19、E正数的负分数指数累的意义是:a n =(-)n =n(1)m(a>0,m,nw N+且n>1). 0a . a的负分数指数嘉没有意义.注意口诀:底数取倒数,指数取相反数.(3)分数指数嘉的运算性质ar as =ar*(a A0,r,sw R)(ar)s = ars(a a0,r,sw R)(ab)r =arbr(a 0,b 0,r R)【2.1.2 指数函数及其性质(4)指数函数函数名称指数函数定义函数y = ax(a > 0且a #1)叫做指数函数图象a >10<a<1y /y = 1Xx /y=a (0,1) y = ax 'y = 4y(0,

20、1)OxOx定义域R值域(0*)过定点图象过定点(0,1),即当x = 0时,y = 1.奇偶性非奇非偶单调性在R上是增函数在R上是减函数函数值的 变化情况ax >1 (x >0) ax=1 (x=0) ax <1 (x <0)ax <1 (x>0)ax=1 (x=0)ax>1 (x<0)a变化对图象的影响在第一象限内,a越大图象越高;在第二象限内,a越大图象越低.【221】对数与对数运算(1)对数的定义若ax =N(a>0,且a #1),则x叫做以a为底N的对数,记作x = loga N ,其中a叫做底数,N叫做真数.负数和零没有对数.对

21、数式与指数式的互化:x =loga N u ax = N(a >0,a=1,N >0).(2)几个重要的对数恒等式logal =0, loga a=1 , loga ab =b .(3)常用对数与自然对数常用对数:lgN ,即log10 N ;自然对数:lnN,即logeN (其中e = 2.71828 ) .(4)对数的运算性质 如果a>0,a=1,M >0,N>0,那么加法:logaM +loga N =loga(MN)减法:loga M log a N = log a MN数乘:nloga M =loga M n(n W R) alogaN=N log b

22、M n =nloga M (b#0,nw R)换底公式:loga N logbN (b>0,l.b1)a blogb a【2.2.2 对数函数及其性质(5)对数函数函数 名称对数函数定义函数y = loga x(a > 0且a # 1)叫做对数函数图象a >10<a<1i yX x = 1 y = loga xJyx x = 1;y = loga xv(1,0).O卜(1,0)xORx定义域(0*)值域R过定点图象过定点(1,0),即当x = 1时,y = 0.奇偶性非奇非偶单调性在(0, 七无)上是增函数在(0,十大)上是减函数函数值的 变化情况lOgax>

23、;0 (x>1) lOgax = 0 (x=1) logax<0 (0 < x <1)lOga x<0 (x>1)lOga x = 0 (x=1)loga x > 0 (0<x<1)a变化对图象的影响在第一象限内,a越大图象越靠低;在第四象限内,a越大图象越靠高.(6)反函数的概念设函数y = f (x)的定义域为 A ,值域为C ,从式子y = f (x)中解出x ,得式子x 二中(y) .如果对于y在C中的任何一个值,通过式子 x = (y), x在A中都有唯一确定的值和它对应,那么式子x =邛(y)表示x是y的函数,函数x=(y)叫做

24、函数y = f (x)的反函数,记作x=f,(y),一 1 、习惯上改写成y = f (x).(7)反函数的求法确定反函数的定义域,即原函数的值域;从原函数式 y = f (x)中反解出x = f,(y);11将x = f (y)改写成y = f (x),并注明反函数的定义域.(8)反函数的性质原函数y = f (x)与反函数y = f,(x)的图象关于直线y = x对称.1 .函数y = f (x)的je乂域、值域分别是其反函数 y = f (x)的值域、定义域.若P(a,b)在原函数y = f(x)的图象上,则P'(b,a)在反函数y=f'(x)的图象上.一般地,函数 y

25、= f (x)要有反函数则它必须为单调函数.R2.3 1募函数(D募函数的定义一般地,函数y=x"叫做募函数,其中 x为自变量,口是常数.(2)募函数的图象(3)募函数的性质图象分布:嘉函数图象分布在第一、二、三象限,第四象限无图象.募函数是偶函数时,图象分布在第一、二象限(图象关于y轴对称);是奇函数时,图象分布在第一、三象限 (图象关于原点对称);是非奇非偶 函数时,图象只分布在第一象限 .过定点:所有的募函数在 (0,也)都有定义,并且图象都通过点 (1,1).单调性:如果a >0,则募函数的图象过原点,并且在 0,十整)上为增函数.如果a <0,则募函数的图象在(

26、0, 十比)上为减函数,在第一象限内,图象无限接近x轴与y轴.奇偶性:当汽为奇数时,募函数为奇函数,当口为偶数时,募函数为偶函数.当a =9 (其中p,q互 P 'q_q质,p和q w Z ),若p为奇数q为奇数时,则y = xp是奇函数,若p为奇数q为偶数时,则y = xpg是偶函数,若 p为偶数q为奇数时,则y =xp是非奇非偶函数.图象特征:嘉函数 y = x%xw (0,七整),当a >1时,若0cx <1,其图象在直线y = x下方,若x1,其图象在直线 y =x上方,当口 <1时,若0 <x <1,其图象在直线 丫 = 乂上方,若乂>1,

27、 其图象在直线y = x下方.R补充知识1二次函数(1)二次函数解析式的三种形式2 2一般式:f(x)=ax +bx+c(a *0)顶点式:f(x)=a(x-h) +k(a#0)两根式:f (x) =a(xx1)(xx2)(a #0)(2)求二次函数解析式的方法已知三个点坐标时,宜用一般式.已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.若已知抛物线与 X轴有两个交点,且横线坐标已知时,选用两根式求f(x)更方便.bx = ,顶点坐标是 2a(3)二次函数图象的性质2一次函数f(x)=ax +bx+c(a #0)的图象是一条抛物线,对称轴方程为/ b 4ac -b2、(

28、一丁,;)-2 a 4abbb当a >0时,抛物线开口向上,函数在(_oo, _巴上递减,在 +望)上递增,当x = _-时,2a2a2a4ac -bbb、,fmin(x)=;当a M0时,抛物线开口向下,函数在 (一8,上递增,在,+资)上4a2a2ab4ac-b递减,当x=时,fmax(x)=2a4a22一次函数f(x)=ax +bx+c(a #0)当 = b 4ac>0时,图象与x轴有两个交点Mi(xi,0)M2(x2,0),MiM2 Hxi -% |=.|a|2(4)一兀一次万桂ax +bx + c =0(a #0)根的分布一元二次方程根的分布是二次函数中的重要内容,这部分

29、知识在初中代数中虽有所涉及,但尚不 够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用, 下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.2设一元二次万程ax+bx + c = 0(a丰0)的两实根为4,x2,且k E & .令22af(x)=ax +bx + c ,从以下四个万面来分析此类问题: 开口万向:a对称轴位置:x 判别式:端点函数值符号. kvxiWx?U31xi < x2< k/y2a ki<xi0X2<k2uf(ki)f(%) <0,并同时考虑 f(ki)=0有且仅有一个根Xi (或X2)

30、满足ki< Xi (或X2) < k2w或f( k2)=0这两种情况是否也符合ki <xy kzW pi< X2< p2U此结论可直接由推出.2(5)一次函数f(X)=aX +bX + c(a00)在闭区间p,q上的最值1设f (x)在区间p, q上的最大值为M ,最小值为 m,x0=_(p+q).2(i)当a >0时(开口向上)若b2a< p,则 m = f (p)bb、b若p < -<q,则m = f ()若>q ,则2a2a2am = f (q)若xxxx叫做函数1、y = f(x)(x D)的零点。2、函数零点的意义:函数y

31、= f (x)的零点就是方程f (x) = 0实数根,亦即函数y = f (x)的 图象与x轴交点的横坐标。即:方程f(x) =0有实数根u 函数y = f (x)的图象与x轴有交点u 函数y = f (x)有零点.3、函数零点的求法:求函数y = f(x)的零点:(代数法)求方程f (x) =0的实数根;(几何法)对于不能用求根公式的方程,可以将它与函数y = f (x)的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:2二次函数 y = ax + bx + c(a 丰 0).2 >。,万程 ax +bx+c = 0有两不等实根,二次函数的图象与x轴有两个交点,二次函数有两

32、个零点.2)= o,方程 ax2 + bx + c = 0有两相等实根(二重根),二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点.23)< o,万桂ax +bx+c = 0无实根,二次函数的图象与 x轴无交点,二次函数无零点.高中数学必修2知识点第一章空间几何体1.1 柱、锥、台、球的结构特征1.2 空间几何体的三视图和直观图1三视图:正视图:从前往后侧视图:从左往右俯视图:从上往下2画三视图的原则:长对齐、高对齐、宽相等3直观图:斜二测画法4斜二测画法的步骤:(1) .平行于坐标轴的线依然平行于坐标轴;(2) .平行于y轴的线长度变半,平行于 x, z轴的线长度不变;

33、(3) .画法要写好。5用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积(一)空间几何体的表面积1棱柱、棱锥的表面积:各个面面积之和225球的表面积S = 4;rR 1_.2锥体的体积V = S底M h32圆柱的表面积 S=2nrl +2冗产3圆锥的表面积 S = 71rl 7rr4圆台的表面积S=nrl +叮2+用1+岷2(二)空间几何体的体积1柱体的体积V = S底父h1433台体的体积V =1 (S上+ qS上S下+S下)Mh4球体的体积 v=1nR3第二章直线与平面的位置关系450,且横边画2.1 空间点、直线、平面之间的位置关

34、系2.1.11平面含义:平面是无限延展的2平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成成邻边的2倍长(如图)(2)平面通常用希腊字母 a、0、丫等表示,如平面a、平面0等,也可以用表示平面的平行四边形的四 个顶点或者相对的两个顶点的大写字母来表示,如平面AC平面ABC詹。3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内符号表不为公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。符号表示为:A B、C三点不共线=> 有且只有一个平面a , 使 AG a、BG a、CG a。公理2作

35、用:确定一个平面的依据。(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。符号表示为:PG a A 0 => a A 0 =L,且PG L公理3作用:判定两个平面是否相交的依据2.1.2空间中直线与直线之间的位置关系1空间的两条直线有如下三种关系:疗目交直线:同一平面内,有且只有一个公共点;共面直线 XI平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点2公理4:平行于同一条直线的两条直线互相平行。 符号表示为:设a、b、c是三条直线 =>a II ca/ b c/ b强调:公理4实质上是说平行具有传递性,在平面、空间这

36、个性质都适用。公理4作用:判断空间两条直线平行的依据。3等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补 4注意点:a'与b所成的角的大小只由a、b的相互位置来确定,与 O的选择无关,为简便,点 O 一般取在两直线中的一条上;一JL 两条异面直线所成的角 9 e (0 , ) ; £当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作 a±b; 两条直线互相垂直,有共面垂直与异面垂直两种情形;计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角2.1.3 2.1.4空间中直线与平面、平面与平面之间的位置关系1、直线与平面有

37、三种位置关系:(1)直线在平面内 一一 有无数个公共点(2)直线与平面相交 一一 有且只有一个公共点(3)直线在平面平行 一一 没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用 a a来表示a qaCa=Aa/a2.2. 直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。 简记为:线线平行,则线面平行。符号表示:a a。 'Ib 0 匚=> a 卜aa/ b2.2.2 平面与平面平行的判定1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两

38、个平面平行符号表小:a/ a/ b2、判断两平面平行的方法有二种:(1)用定义;(2)判定定理;(3)垂直于同一条直线的两个平面平行。2.2.3 2.2.4直线与平面、平面与平面平行的性质1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。 简记为:线面平行则线线平行。符号表示:a C 0 = b作用:利用该定理可解决直线间的平行问题。2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。符号表小:a / 0、a C 丫 = a a bB n 丫 = b J作用:可以由平面与平面平行得出直线与直线平行2.3直线、平面垂直的判定及其性质2.3.1 直线与

39、平面垂直的判定1、定义L _L a ,直P叫做垂足。如果直线L与平面a内的任意一条直线都垂直,我们就说直线L与平面a互相垂直,记作线L叫做平面a的垂线,平面a叫做直线L的垂面。如图,直线与平面垂直时,它们唯一公共点2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了 “直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。2.3.2 平面与平面垂直的判定1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形0 或 a -AB- 03、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则

40、这两个平面垂直。2.3.3 2.3.4直线与平面、平面与平面垂直的性质1、定理:垂直于同一个平面的两条直线平行。2性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。本章知识结构框图平面(公理1、公理2、公理3、公理4)空间直线、平面的位置关系第三章直线与方程3.1直线的倾斜角和斜率3.1倾斜角和斜率1、直线的倾斜角的概念:当直线 l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成 的角a叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时,规定a = 0 ° .2、倾斜角a的取值范围:0 ° & a < 180°

41、.当直线l与x轴垂直时,a = 90 ° .3、直线的斜率:一条直线的倾斜角a ( a,90° )的正切值叫做这条直线的斜率,斜率常用小写字母 k表示,也就是k=tan a当直线l与x轴平行或重合时,a =0° , k = tan0 0 =0;当直线l与x轴垂直时,a = 90 ° , k不存在.由此可知,一条直线l的倾斜角a 一定存在,但是斜率k不一定存在.4、直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1,x2,用两点的坐标来表示直线P1P2的斜率:斜率公式:k=y2-y1/x2-x13.1.2两条直线的平行与垂直1、两条直线都

42、有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即二:1 1 一注意:上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2,那么一定有 L1/L22、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即3.2.1 直线的点斜式方程1、 直线的点斜式 1_1方程:直线l经过点P0(xO, y°),且斜率 为 k2y y0 = k(x x0)2、直线的斜截式方程:已知直线l的斜率为k ,且与y轴的交点为(0,b) y= kx+ b3.2

43、.2 直线的两点式方程1、直线的两点式方程:已知两点P1(x1,x2), P2(x2, y2)其中(x1 # x2, y1 0 y2)y-y1/y-y2=x-x1/x-x22、直线的截距式方程:已知直线l与X轴的交点为 A(a,0), 与y轴的交点为 B(Qb), 其中a =0,b = 03.2.3 直线的一般式方程1、直线的一般式方程:关于 x, y的二元一次方程 Ax + By + C = 0 (a, b不同时为o) 2、各种直线方程之间的互化。3.3直线的交点坐标与距离公式线的交点坐标题:两直线交点坐标得 x=-2, y=23.1Plp2|=j(X2.X2 j +(y2f fL1 : 3

44、x+4y-2=0 L1: 2x+y +2=0.3x 4y- 2= 0解:解方程组y2x 2y 2 0所以L1与L2的交点坐标为 M (-2, 2)3.3.2 两点间距离两点间的距离公式3.3.3点到直线的距离公式1 .点到直线距离公式:、Ax° + By°+C点P(x°, y°)到直线l : Ax + By + C =0的距离为:d =,A2 B22、两平行线间的距离公式:已知两条平行线直线l1和l2的一般式方程为l1Ax + By + C1 = 0 ,1,Ci - C2l2 : Ax+By+C2 =0,则l1与1的距离为d = 二L ,A2 B2第四章

45、 圆与方程4.1.1圆的标准方程2221、圆的标准万程:(x-a) Yy-b)二r圆心为A(a,b),半径为r的圆的方程2. . 222、点M (x0,y0)与圆(xa) +(yb) =r的关系的判断万法:22 2222(1)(x0-a)+(y0b)>r,点在圆外 (x0-a)+(y0b) =r ,点在圆上22 2(3)(x0 -a) +(y0b) <r,点在圆内4.1.2 圆的一般方程1、圆的一般方程:x2 y2 Dx Ey F 02、圆的一般方程的特点:(1)x2和y2的系数相同,不等于 0. 没有xy这样的二次项.(2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这

46、三个系数,圆的方程就确定了.(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指 出了圆心坐标与半径大小,几何特征较明显。4.2.1 圆与圆的位置关系1、用点到直线的距离来判断直线与圆的位置关系.设直线 l : ax +by +c =0,圆 C : x2 + y2 + Dx + Ey + F =0 ,圆的半径为 r ,圆心(_R , )22到直线的距离为d,则判别直线与圆的位置关系的依据有以下几点:(1)当d >r时,直线l与圆C相离;(2)当d =r时,直线1与圆C相切;(3)当d <r时,直线1与圆C相交;4.2.2 圆与圆的位置关系两圆的位

47、置关系.设两圆的连心线长为1 ,则判别圆与圆的位置关系的依据有以下几点:(1)当1Ar1+2时,圆Ci与圆C2相离;(2)当1=r1+2时,圆G与圆C2外切; 当|r1 一2 1<1<门+2时,圆C1与圆C2相交;(4)当1 Tn 21时,圆c1与圆C2内切;(5)当1 ch 21时,圆c1与圆C2内含;4.2.3 直线与圆的方程的应用1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译

48、”成几何结论.4.3.1空间直角坐标系1、点m对应着唯一确定的有序实数组 (x, y,z) , x、yz轴上的坐标2、有序实数组(x, y, z),对应着空间直角坐标系中的一点AR/ M'。左、z 分别是 P、Q、R 在 x、y、/PM'x3、空间中任意点 M的坐标都可以用有序实数组(x, y, z)来表示,该数组叫做点M在此空间直角坐标系中的坐标,记M (x, y,z) , x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标。4.3.2空间两点间的距离公式1、空间中任意一点 已(不,丫1,乙)到点P2(x2,y2,z2)之间的距离公式(zi - z2)2RPj 

49、9; J(x1 - x2)2 + (yi - y2)2 +高中数学必修3知识点第一章算法初步1.1.1算法的概念1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成2.算法的特点:有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的 (2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤, 前一步是后一步的前提,只有执行完前一步才能进行下一

50、步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.1.2 程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。(二)构成程序框的图形符号及其作用程序框名称功能-J起止框表示一个算法的起始和结束,是任何流程图不可少的。输入、输出框表示一个

51、算法输入和输出的信息,可用在算法中任何需要输入、输出的位置。处理框赋值、计算,算法中处理数据需要的算式、公式等分别写在不同的用以处理数据的处理框内。判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y” ;不成立时标明“否”或“ N”。学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。2、框图一般按从上到下、从左到右的方向画。 3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。 判断框具有超过一个退出点的唯一符号。 4、判断框分两大类,一类判 断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种

52、不同的结果。5、 在图形符号内描述的语言要非常简练清楚。(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。顺序结构在程序框图中的体现就是用流程线将程序框自上而1r下地连接起来,按顺序执行算法步骤。如在示意图中,A框和BA框是依次执行的,只有在执行完A框指定的操作后,才能接着执.行B框所指定的操作。B2、条件结构:蕈条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的算法结构。条件P是否成立而选

53、择执行 A框或B框。无论P条件是否成立,只能执行 A框或B框之一,不可能同 时执行A框和B框,也不可能A框、B框都不执行。一个判断结构可以有多个判断框。3、循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。循环结构又称重复结构,循环结构可细分为两类:(1)、一类是当型循环结构,如下左图所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,再判断条件 P是否成立,如果仍然成立,再执行 A框,如此反复执行 A框,直到某一次条件 P 不成立为止,此时不再执行 A框,离开循环结构。(2)、另一类是直到型循环结构,如下右图所示,它的功能是先执行,然后判断给定的条件P

0/150

联系客服

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!

THE END
0.高考必备:高中数学所有知识点总结(word下载)高考高中数学知识点是高考数学必备复习资料,为了帮助大家更好地进行高考数学的复习,新东方在线高考网为大家整理了高中数学所有知识点总结,供大家参考,以下是《高考必备:高中数学所有知识点总结(word下载)》。 高考必备:高中数学所有知识点总结(word下载) 打包下载戳这里》》》:十五章汇总知识点 jvzquC41pg}t0ttqnggsp7hqo1813?64355239:5444ivvq
1.高三数学知识点总结(精选18篇)6.高三数学知识点总结 篇六 平面向量 向量的概念与运算:向量是大小和方向都有的量,可以用有向线段表示。向量的运算包括加法、减法、数量积和向量积。 示例:向量a=(3,4),向量b=(-2,7),则a+b=(1,11),a-b=(5,-3)。 向量的数量积与向量积:向量的数量积(点积)和向量积(叉积)是向量运算的两种形式,jvzquC41o0;2vnxv0pku1|mqy1724:73284ivvq
2.高中数学知识点全总结(精选10篇)在学习中,大家最不陌生的就是知识点吧!知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。掌握知识点有助于大家更好的学习。下面是小编帮大家整理的高中数学知识点总结(精选10篇),仅供参考,希望能够帮助到大家。 高中数学知识点总结1 一、自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。 特别地,当b=0时,y是x的 jvzquC41okv/t~nygp4dqv4yqtj0ijt|jqthuqzzwg€ik|mkfkgos~fp|qthlrj0jvsm
3.高中数学知识点总结(最全版)高中数学知识点总结 引言 1.课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幂函数) 必修2:立体几何初步、平面解析几何初步。 必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。 jvzquC41yy}/5?5fqe4dp8iqewsfp}498668:?>a3279;;>97;4ivvq
4.高中数学知识点总结(精选32篇)高中数学知识点总结(精选32篇) 高中数学知识点总结 篇1 有界性 设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界. 单调性 设函数f(x)的定义域为D,区间I包含于D.如果对于区间上任意两点x1及x2,当x1f(x2),则称函jvzquC41yy}/fr~khctxgw3eqo5gcw|gp1mpppwq|uoisng4175:=95854ivvq
5.高中数学知识点总结高中数学知识点总结 4 集合的分类: (1)按元素属性分类,如点集,数集。 (2)按元素的个数多少,分为有/无限集 关于集合的概念: (1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。 jvzq<84yyy4vpsx0eqs0hjsygpqv1<:3487/j}rn
6.高中数学知识点总结通用15篇总结是把一定阶段内的有关情况分析研究,做出有指导性的经验方法以及结论的书面材料,它可以给我们下一阶段的学习和工作生活做指导,让我们来为自己写一份总结吧。那么你知道总结如何写吗?以下是小编帮大家整理的高中数学知识点总结,欢迎大家分享。 高中数学知识点总结1 jvzquC41yy}/f~fpogoxgw3eqo5{qwllkg542<=:754ivvq
7.高考数学知识点高考数学复习高考数学考点> 数学知识点 涵盖高考数学多个常考知识点,共分为16个专题对高考数学知识点进行总结 包括函数、数列、不等式、三角函数、立体几何等重点内容 帮助考生从高中知识点 高中语文知识点 高中数学知识点 高中英语知识点 高中物理知识点 高中化学知识点 高中政治知识点 高考特别策划 高考冲刺 高考真题 高考作文 高考查分jvzq<84yyy4hcxpcq0ipo8ggkmgp1pp|uf5tzƒxf1
8.高中数学知识点归纳汇总.pdf高中数学知识点归纳汇总 .pdf,高中数学知识总结归纳(打印版) 引言 1 .课程内容: 必修课程由5个模块组成: 必修1:集合、函数概念与基本初等函数(指、对、幕函数) 必修2:立体几何初步、平面解析几何初步。 必修3:算法初步、统计、概率。 必修4:基本初等函数(三角函数jvzquC41oc~/dxtm33>/exr1jvsm1;5461662:4754643;8442724960ujzn
9.高一数学知识点总结高一数学怎么学?多预习,预习还可以培养自己的自学能力。今天小编在这给大家整理了高一数学知识点总结_直线与方程知识点,接下来随着小编一起来看看吧! 高一数学知识点总结(一) 直线的倾斜角与斜率 定义: x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0jvzquC41yy}/z~jzkng/exr1zwkykok1icuzk|mwzwk0e=<6967/j}rn
10.[《习坎文摘》第65期]说题|湖北省沙市中学学生说题应包括如下内容:说题目大致意思,尤其要说明题目的已知条件和问题,特别要注意挖掘题中隐含条件;说题目所涉及的知识点;说解题的方法;说解题的步骤;说解答的格式和表述;说应用的数学思想方法;说其它解法、解法的优化、变化和结论的一般推广;说解题总结,说题目的来源、背景和前后知识的联系,说解题的特别注意点和jvzq<84yyy4id|x|z0ipo8UtkpzBt}neng532B<:
11.高中数学知识点总结及公式大全高中数学知识点总结及公式大全 1、常用数学公式表 (1)乘法与因式分解 a2-b2=(a+b)(a-b);a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2)。 (2)三角不等式 |a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b-b≤a≤b;|a-b|≥|a|-|b|-|a|≤a≤|a|。 (3)一元二次方程的解:-jvzq<84yyy4hcxpcq0ipo8j142842=7318:54
12.高考数学知识点归纳总结及公式大全高中数学知识点总结1 一、高中数列基本公式: 1、一般数列的通项an与前n项和Sn的关系 2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。 3、等差数列的前n项和公式,当d≠0时,Sn是关于n的二次式且jvzquC41yy}/z~jzkng/exr1zwkykok1uj{ywn4e42934?80jvsm
13.2021高一数学知识点总结2021高一数学知识点总结 总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以促使我们思考,为此我们要做好回顾,写好总结。但是总结有什么要求呢?下面是小编为大家整理的2021高一数学知识点总结,欢迎阅读与收藏。 2021高一数学知识点总结1 jvzq<84yyy4vpsx0eqs0hjsygpqv1;8:54;/j}rn
14.高中数学注意点汇总十篇问题化原则是将高中数学知识点转变为探索性的数学问题点、能力点,通过对高中数学知识点的设疑、质疑、解释,从而激发学生主动思考,逐步培养学生的探究创新精神以及对高中数学教材的分析、归纳、演绎的能力。将高中数学教材中的知识点、德育点隐入创设的一个个具体的情景或课堂活动中。通过一个个具有探索性的问题,引导学jvzquC41yy}/z~jujw4dqv3ep1nbq€jp16856?3jvor
15.史上最全:高中数学核心知识点总结baoyisheng143 >《数学》2021.08.30 关注 本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报。打开APP,阅读全文并永久保存 查看更多类似文章 猜你喜欢 类似文章 收藏:高中数学核心知识点总结 高中数学:核心知识点总结,超全 高中数学100个核心知识点! 【高中数学】务必掌握的核心知识点 jvzquC41yy}/5?5fqe4dp8ftvkimg876;7=66h>;55?7::80jvsm
16.高二数学知识点总结(集锦15篇)高二数学知识点总结(集锦15篇) 总结是指社会团体、企业单位和个人在自身的某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而肯定成绩,得到经验,找出差距,得出教训和一些规律性认识的一种书面材料,它能够给人努力工作的动力,不妨坐下来好好写写总结吧。总结怎么写才是正确的呢?下面是小jvzquC41yy}/f~fpogoxgw3eqo5{qwllkg524B>2384ivvq
17.人教版数学必修一知识点总结人教版数学必修一知识点总结 在日常的学习中,大家对知识点应该都不陌生吧?知识点有时候特指教科书上或考试的知识。那么,都有哪些知识点呢?下面是小编为大家整理的人教版数学必修一知识点总结,仅供参考,欢迎大家阅读。 数学必修一知识点总结1 一、集合有关概念 jvzq<84yyy4vpsx0eqs0hjsygpqv1<6993;/j}rn
18.有关高一数学知识点总结总结是指社会团体、企业单位和个人对某一阶段的学习、工作或其完成情况加以回顾和分析,得出教训和一些规律性认识的一种书面材料,它可以有效锻炼我们的语言组织能力,让我们来为自己写一份总结吧。那么总结有什么格式呢?以下是小编收集整理的有关高一数学知识点总结,仅供参考,欢迎大家阅读。 jvzquC41okv/qq6220ipo8xjwz{f1><497:60qyon
19.高中数学题型总结(精选35篇)学习了导数基础知识点,接下来可以学习高二数学中涉及到的导数应用的部分。 高中数学题型总结 篇10 轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。 jvzquC41yy}/fr~khctxgw3eqo5gcw|gp1mpppwq|uoisng4176:<57;84ivvq
20.高三数学知识点归纳总结(精选31篇)高三数学知识点归纳总结 篇1 付正军:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节,主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它jvzquC41yy}/fr~khctxgw3eqo5gcw|gp1mpppwq|uoisng41767@6;874ivvq