【导语】下面小编给大家整理的小学五年级下册数学复习资料(共6篇),欢迎阅读!
1、为了方便,在研究因数和倍数的时候,我们所说的数指的是整数(一般不包括0)
2、一个数的最小因数是1,最大的因数是本身。一个数的因数的个数是有限的。
3、一个数的最小倍数是本身,没有最大的倍数。一个数的倍数的个数是无限的。
4、一个数的最大因数和最小倍数是相等的,都是它本身。
5、完全数:6的因数有1,2,3,6,这几个因数的关系是:1+2+3=6,像6这样的数叫完全数,也叫完美数。完全数较小的有6,28,496,8128……
6、个位上是0,2,4,6,8的数都是2的倍数。
7、自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。自然数中的数不是奇数就是偶数。
8、奇数+偶数=奇数 奇数+奇数=偶数 偶数+偶数=偶数
偶数±偶数=偶数 奇数±奇数=偶数 奇数±偶数=奇数
偶数个偶数相加是偶数,奇数个奇数相加是奇数。
偶数×偶数=偶数 奇数×奇数=奇数 奇数×偶数=偶数
相临两个自然数之和为奇数,相邻自然数之积为偶数。
如果乘式中有一个数为偶数,那么乘积一定是偶数。
9、个位上是0或5的数是5的倍数。
10、一个数各位上的数的和是3的倍数,这个数就是3的倍数。
11、3, 5的倍数的特征:个位是0或者5的并且各个数位上的数字之和能被3整除的数。
12、2, 3的倍数的特征:个位是0、2、4、6、8并且各个数位上的数字之和能被3整除的数。
13、2, 3,5的倍数的特征:个位是0并且各个数位上的数字之和能被3整除的数。
14、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。如2,3,5,7都是质数。
15、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。如4,6,8,9,10都是合数。
1. 因为2×6=12,我们就说2和6是12的因数,12是2的倍数,也是6的倍数。不能单独说谁是倍数或因数
2. 求一个数的因数,用乘法一对一对找,写的时候一般都是从小到大排列的
3. 求一个数的倍数,用一个数去乘1、乘2、乘3、乘4……
4. 一个数的最小因数是1,最大的因数是它本身,一个数的因数的个数是有限的。
5. 一个数的最小的倍数是它本身,没有最大的倍数,一个数的倍数的个数是无限的。
6. 个位上是 0,2,4,6,8的数,都是2的倍数,也是偶数。
7. 自然数中,是2的倍数的数叫做偶数(0也是偶数)。不是2的倍数的数叫奇数。
8. 个位上是0或者5的数,都是5的倍数。
9. 个位是0的数,既是2的倍数,又是5的倍数。
10. 一个数各位上的和是3的倍数,这个数就是3的倍数。
11. 只有1和它本身两个因数的数叫做质数(或素数),除了1和它本身还有别的因数的数叫做合数。1既不是质数,也不是合数。
12. 整数按因数的个数来分类:1,质数,合数。整数按是否是2的倍数来分类:奇数,偶数
13. 将合数分解成几个质数相乘的形式就叫做分解质因数。分解质因数用短除法,把36分解质因数是?
14. 最小的质数是2,最小合数是4,最小奇数是1,最小偶数是0,同时是2,5,3倍数的最小数是30,最小三位数是120
15. 奇数加奇数等于偶数。奇数加偶数等于奇数。偶数加偶数等于偶数。
16. a是c的倍数,b是c的倍数,那么a+b的和是c的倍数,c是a+b和的因数,a-b的差是c的倍数,c是a-b差的因数。
17. 如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。
18. 轴对称图形特征:对应点到对称轴的距离相等,对应点连线垂直于对称轴
19. 长方体有6个面。每个面都是长方形(可能有两个相对的面是正方形),相对的面大小相等(完全相同)。
20. 长方体有12条棱,分为三组,相对的4条棱长度相等。
21. 长方体有8个顶点。
22. 相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高
23. 正方体有6个面, 6个面都是正方形 ,6个面完全相等,正方体有12条棱, 12条棱长度都相等,正方体有8个顶点
24. 长方体棱长之和:(长+宽+高)×4 长×4+宽×4+高×4
25. 正方体棱长之和:棱长×12
26. 长方体(正方体)6个面的总面积,叫做它的表面积。
27. 长方体表面积=(长×宽+宽×高+长×高)×2 或长方体表面积=长×宽×2+宽×高×2+长×高×2
28. 正方体表面积=棱长×棱长×6
29. 计量体积要用体积单位,常用的体积单位有立方厘米,立方分米,立方米,可以分别写成cm3 dm3 m3
30. 棱长是1cm的正方体,体积是1 cm3,棱长是1cm的正方体,体积是1 dm3,棱长是1cm的正方体,体积是1 m3
31. 长方体所含体积单位的数量就是长方体的体积。长方体的体积=长×宽×高,v=abh;正方体体积=棱长×棱长×棱长,v=a3 =a×a×a a3表示3个a相乘
32. 相邻两个体积单位间的进率是1000,相邻两个面积单位间的进率是1000,相邻两个长度单位间的进率是10,1立方米=1000立方分米,1立方分米=1立方厘米,1升=1000毫升,1立方米=1000000立方厘米,计量容积一般用体积单位,计量液体的体积,用升和毫升
33. 一个物体、一些物体等都可以看作一个整体,一个整体可以用自然数1来表示,通常把它叫做单位“1”。
34. 把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。例如:表示把单位“1”平均分成7份,表示这样的3份。其中表示一份的数叫做分数单位。
35. 米表示
(1) 把5米看作单位“1”,把单位“1”平均分成8份,表示这样的1份,就是米,算式:5÷8=(米)
(2) 把1米看作单位“1”,把单位“1”平均分成8份,表示这样的5份,就是米,算式:1÷8=(米),5个米就是米
36. 当整数除法得不到整数的商时,可以用分数表示除法的商。在用分数表示整数除法的商时,分数的分子相当于除法的被除数,分数的分母相当于除法的除数,除号相当于分数中的分数线。(除数不能为0)区别:分数是一种数,除法是一种运算
37. 分子比分母小的分数叫真分数,真分数小于1。分子比分母大或分子和分母相等的分数叫做假分数,假分数大于或等于1。
38. 带分数包括整数部分和分数部分。假分数化成带分数,用分子除以分母所得的商作为带分数的整数部分,余数作为分子,分母不变。带分数化成假分数时,用整数部分和分母相乘再加分子所得结果作分子,分母不变。
39. A是B的几分之几?用A÷B
40. 分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。
41. 几个数公有的因数,叫做这几个数的公因数。其中最大的一个叫做这几个数的最大公因数。通常把每个数分解质因数,把它们所有的公有质因数相乘,来求最大公因数。
42. 如果两个数的公因数只有1,这两个数是互质数。两个连续自然数;两个质数;1和其他自然数一定是互质数。
43. 分子和分母只有公因数1的分数叫做最简分数。把一个分数化成和它相等,但分子分母比较小的分数,叫做约分。
44. 几个数公有的倍数,叫做这几个数的公倍数。其中最小的一个叫做这几个数的最小公倍数。通常把每个数分解质因数,把它们所有的公有质因数和独有质因数相乘,来求最小公倍数。
45. 把异分母分数分别化成和原来分数相等的同分母分数(公分母),叫做通分。
46. 求三个数的最大公因数和最小公倍数时,可以先求其中两个数的最大公因数和最小公倍数,用求出的最大公因数和最小公倍数再与第三个数求最大公因数和最小公倍数。
47. 如果两个数是倍数关系,那么两个数的最大公因数是较小数,最小公倍数是较大数。
48. 如果两个数公因数只有1,那么这两个数的最大公因数是1,最小公倍数是它们的乘积。
49. 两个数公因数只有1的几种特殊情况:1和其他自然数,相邻两个自然数,两个质数。
50. 分数化成小数:用分子除以分母化成小数。小数化成分数:把小数写成分母是10,100,1000……的分数,然后再化成最简分数。
分数的意义和性质
1、在进行测量、分物或计算时,往往不能正好得到整数的结果,这时常用分数来表示。
2、一些物体﹑一些物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。这就是分数的意义。
3、一个整体可以用自然数1来表示,通常把它叫做单位“1”。
4、把单位“1”平均分为若干份,表示其中的一份的数叫分数单位。如:2/3的分数单位是1/3。
1、公式
长方形:周长=(长+宽)×2;字母公式:C=(a+b)×2
面积=长×宽;字母公式:S=ab
正方形:周长=边长×4;字母公式:C=4a
面积=边长×边长;字母公式:S=a
平行四边形:面积=底×高;字母公式:S=ah
三角形:面积=底×高÷2;字母公式:S=ah÷2
底=面积×2÷高;高=面积×2÷底
梯形:面积=(上底+下底)×高÷2;字母公式:S=(a+b)h÷2
上底=面积×2÷高-下底;下底=面积×2÷高-上底;高=面积×2÷(上底+下底)
2、单位换算的方法
大化小,乘进率;小化大,除以进率。
3、常用单位间的进率
1千米=1000米1米=10分米
1分米=10厘米1厘米=10毫米
1平方千米=100公顷1公顷=10000平方米
1平方米=100平方分米1平方分米=100平方厘米
4、图形之间的关系
(1)、平行四边形可以转化成一个长方形;两个完全相同的三角形可以拼成一个平行四边形。两个完全相同的梯形可以拼成一个平行四边形。
(2)、等底等高的平行四边形面积相等;等底等高的三角形面积相等。
(3)、等底等高的平行四边形面积是三角形面积的2倍。如果一个三角形和一个平行四边形等面积,等底,则三角形的高是平行四边形的2倍。如果一个三角形和一个平行四边形等面积,等高,则三角形的底是平行四边形的2倍。
(4)、把长方形框架拉成平行四边形,周长不变,面积变小了。
5、求组合图形面积的方法
(1)仔细观察,确定组合图形可以分割或添补成哪些可以计算面积的基本图形。
(2)找到计算这些基本图形的面积所需要的数据。
(3)分别计算这些基本图形的面积,然后再相加或相减。
《小数乘法》知识点
一、意义
1、小数乘整数:求几个相同加数的和的简便运算。
如:3.2+3.2+3.2+3.2+3.2改用乘法算式表示为(3.2×5),这个乘法算式表示的意义是(5个3.2是多少)
2、小数乘小数:就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少。
二、算理
1、计算方法:按整数乘法的法则算出积,再点小数点;点小数点时,要看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
小数乘法计算法则简记为:一算,二看,三数,四点,五去;
2、注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、乘法的验算有很多种方法:可以交换两个因数的位置再算一遍;可以用估算的方法;还可以用计算器验算。
4、积与因数的关系:
一个数(0除外)乘大于1的数,积比原来的数大;
一个数(0除外)乘小于1的数,积比原来的数小。
用字母表示:a×b=c(a不等于0)
b>1,a>c
b=1,a=c
b<1,a
三、积的近似数
1、求近似数的方法有三种:四舍五入法、进一法、去尾法,在这一单元主要用四舍五入法。
步骤如下:先按照小数乘小数的方法算出积,再按题目的要求和“四舍五入”法取近似值。
注意:表示近似数时小数末尾的0不能随便去掉。
如:0.599保留两位小数是( )
2、通常情况下,人民币的最小单位是分,以元为单位的小数表示“分”的是百分位。
四、混合运算
小数四则运算顺序跟整数是一样的。
整数乘法的交换律、结合律和分配律,对于小数乘法也适用。
关于乘法分配律的简算是这一部分的重点和难点。
案例:0.25×4.78×4
0.65×202
2.4×1.5-2.4
2.4×0.6+2.6×0.6
12.5×32×0.25
五、解决问题
1、实际生活中的估算应用,可以估大或者估小,要根据实际情况选择适当的估算策略。
2、分段计费的问题,比如乘坐出租车的问题、电费水费的问题都属于分段计费。解决方案有两种:第一种分段计费后在合并;第二种全程单价计算然后再加上少算的金额。
▼《因数与倍数》
1、如果a×b=c,(a、b、c都是不为0的整数),那么a,b就是c的因数,c就是a,b的倍数。 例如:3×6=18,那么3和6就是18的因数,18就是3和6的倍数。
24÷6=4, 那么4和6就是24的因数,24就是4和6的倍数。
2、因数和倍数是相互依存的,不能说一个数是因数,一个数是倍数,必须说谁是谁的因数,谁是谁的倍数。 例如:⑴ 5是因数,15是倍数。( × )
⑵ 5是15的因数,15是5的倍数。( √ )
3、求一个数的因数的方法:(1)列乘法算式找;(看哪两个数相乘的积是要求的数,这两个数就是这个数的因数。要从自然数1开始,一对一对去找不要遗漏。) (2)列除法算式找。(这个数除以那些整数,商是整数而没有余数,那么商和除数就是这个数的因数。) 例: 18的因数有哪几个?
4、求一个数的倍数的方法:(1)列乘法算式找;(用这个数乘以不是0的自然数得到的积就是这个数的倍数,要从自然数1开始。) (2)列除法算式找。(哪个数除以这个数,商是整数而没有余数,那么那个数就是这个数的倍数。)
例: 4的倍数有哪些?50以内8的倍数有哪些?
5、倍数和倍的区别:倍可以运用于整数、小数、分数,而倍数只能运用于整数。
例:15是3的5倍,可以说15是3的倍数。1.5是0.3的5倍,不能说1.5是0.3的倍数。
6、一个数的最小因数是 1 ,最大的因数是它本身,一个数的因数的个数是有限的。 例如:12的最小因数是( 1 ),最大的因数是( 12 )。
7、一个数的最小倍数是它本身, 没有最大的倍数,一个数的倍数的个数是无限的。 例如:18的最小倍数是( 18 )。
8、一个不为0的自然数,既是它本身的最小倍数,又是它本身的最大因数。
例:⑴一个数的最大因数等于它的最小倍数。( × )
⑵一个数(0除外)的最大因数等于它的最小倍数。( √ )
⑶一个数的最大的因数和最小倍数都是18,这个数是( 18 )。
9、如果两个数都是一个数的倍数,那么这两个数的和(差)也是这个数的倍数。
例如:14是7的倍数,21是7的倍数。14和21的和也是7的倍数。
64是8的倍数,32是8的倍数。64和32的差也是8的倍数。
10、个位上是0、2、4、6、8的数都是2的倍数。自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。
例:按2的倍数的特征,自然数分成( 奇数 )和( 偶数 )。最小的偶数是(0 ),最小的奇数是( 1 )。
所有的自然数,不是奇数就是偶数。( √ )
11、个位上是 0 或 5 的数,是5的倍数。
12、一个数各位上的数的 和 是3的倍数,这个数就是3的倍数。
13、既是2的倍数,又是5的倍数,个位上只能是0。同时是2、3、5的倍数,个位上的数只能是0,并且各位上的数的和是3的倍数。
例如:(1)同时2、3和5的倍数最小的两位数是 30 ,最大的两位数是 90 , 最小的三位数是 120 ,最大的三位数是 990 。
(2)从4、3、0、5四个数字中取出三个数字,按要求组成三位数。
奇数( ) 偶数( ) 2的倍数( )
3的倍数( ) 5的倍数( ) 既是2倍数又是3的倍数( )
14、奇数+奇数=偶数,偶数+偶数=偶数,奇数+偶数=奇数
15、⑴一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。质数只有( 2 )个因数。
⑵一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。合数至少有( 3 )个因数。
⑶1只有一个因数,所以1不是质数,也不是合数。
16、按因数的个数,把非零的自然数分成 1、质数和合数 。
最小的质数是(2),2是唯一的偶质数。最小的合数是( 4 ),
20以内的质数有2、3、5、7、9、11、13、17、19.
20以内合数有:4、6、8、9、10、12、14、15、16、18、20.
17、质数和合数的个数是有限的。没有最大的质数和合数。
18、100以内质数表。
例:①10以内既是奇数,又是合数的数是( 9 )。
②在7、17、27、37、47、57、67、77、87、97这10个数中,
质数有: 7、17、37、47、67、97。合数有27、57、77、87。
③判断:所有的质数都是奇数,所有的合数都是偶数。( × )
两个质数的和是偶数。( × )
两个质数相乘,积是合数。( √ )
19、把一个合数写成几个质数相乘的形式就是分解质因数。例如:把30分解质因数。
方法一:树状图式分解法。(先把30分解成两个数(1除外)相乘的形式,30分解成2×15, 2是质数,不需要再分解,15是合数,需再进行分解,15可以分解成3×5.直到所有因数都是质数为止。
方法二:短除法。除数和商都不能是1,因为1不是质数。把除数和商写成相乘的形式。
1、树状图式分解法。 2、短除法。
2 30
3 15
30=2×3×5
例:⑴三个不同质数的积是385,这三个质数的和是多少?
385=5 × 7 × 11
5 + 7 + 11 = 23
⑵小明和弟弟的年龄都是质数,积是65.小明和弟弟的年龄分别是多少岁?
65 = 5 ×13
小明:13岁 弟弟:5岁
▼《空间与图形》
图形的变换
(一)轴对称
1、轴对称: 把一个图形沿着某一条直线对折,如果它能够与另一个图形完全重合,这样的图形叫做轴对称图形, 这条直线叫做对称轴。沿对称轴对折,对应点重合,对应线段重合,对应角重合。对应点到对称轴的距离相等。
2、学过的轴对称平面图形:长方形、正方形、圆形、等腰三角形、等边三角形、等腰梯形……
3、圆有无数条对称轴。长方形有2条,正方形有4条,等边三角形有3条。等腰梯形有1条,五角星有5条,正六边形有6条。
(二)旋转
1、旋转:物体绕某一个点或轴运动,这种现象就是旋转。
旋转三要素:旋转中心,旋转方向,旋转角度。
2、生活中的旋转:电风扇、车轮、纸风车、开或关门。拧开水龙头。
生活中的平移:电梯升降。拉开抽屉。
3、长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合。等边三角形绕中点旋转120度与原来重合。
4、旋转的性质:图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;其中对应点到旋转中心的距离相等;旋转前后图形的大小和形状没有改变,只是位置变了;旋转中心是唯一不动的点。
▼《分数加减法》
1、复习三年级下册知识:
同分母分数的加减运算的方法:同分母分数相加减,分母不变,分子相加或相减。
2、异分母分数加减法的计算方法:分母不同的分数相加减,要先通分,化成相同的分母,再加减。
注意:计算结果能约分的要约成最简分数。
3、分数加减混合运算顺序与整数和小数的加减混合运算顺序相同。
计算加减混合运算时,方法要灵活处理,可以:
(1)先全部通分,再进行计算;
(2)也可先计算三个数中的两个数后,再进行通分的;
(3)也有先部分进行通分,算出部分的结果后,再第二次通分的。
注意:具体的题型具体分析,尽量使计算过程更加简便。
补充知识点:整数加减法运算定律在分数加减法中同样适用,见下图:
4、把分数化成小数的方法:通常是利用分数与除法的关系,用分子除以分母来得到。
注意:对于某些分数也可以将它化为分母是10、100、1000之类的分数,然后再直接写成小数形式。例如:
5、常见分数和小数的互化
▼《长方体(一)》
1、长方体、正方体各自的特点:
顶点
个数
个数
形 状
大小关系
条数
长度关系
长方体
都是长方形,特殊的有两个相对的面是正方形,其余四个面是完全一样的长方形。
相对的面是完全一样的长方形。
12
可以分为三组,相对的棱平行且相等。
正方体
都是正方形。
每个面都是正方形。
12
长度都相等。
注意:正方体是特殊的长方体。
2、长方体的棱长总和=(长+宽+高)×4 或者 长×4+宽×4+高×4
正方体的棱长总和=棱长×12
灵活运用公式,能求出长方体的长、宽、高或是正方体的棱长:
长方体:长+宽+高=长方体的棱长总和÷4 长=长方体的棱长总和÷4-宽-高
正方体:棱长=正方体的棱长总和÷12
3、了解长方体和正方体的平面展开图;了解正方体平面展开图的几种形式,并以此来判断。
正方体展开规律(四类)
第一类,中间四连方,两侧各一个,共六种:
第二类,中间三连方,两侧各有一、二个,共三种:
第三类,中间二连方,两侧各有二个,只有一种:
第四类,两排各三个,只有一种:
4、长方体的表面积是指六个面的面积之和。
长方体表面积=(长×宽+宽×高+长×高)×2
正方体表面积=边长×边长×6
5、露在外面的面的个数:有两种常见的观察方法。
法一:看每个纸箱露在外面的面,再加到一起;
法二:分别从正面、上面、侧面进行不同角度的观察,看每个角度都能看到多少个面,再加到一起。
例如:如图,4个棱长都是10厘米的正方体堆放在墙角处,露在外面的面积是多少?
解:首先应找出有多少个面露在外面:
如果用法一的方法来找:3+1+2+3=9(个);
如果用法二的方法来找:从上面看有3个面,从右侧面看有2个面,从正面看有4个面,共有3+2+4=9(个)。
因为每个面都是面积相等的正方形,所以露在外面的面积=10×10×9=900(厘米2)
答:露在外面的面积一共是900平方厘米。
6、发现并找出堆放的正方体的个数与露在外面的面数的变化规律,采用列表法来找规律,
▼《分数乘法》
1、分数乘整数的意义比起整数乘整数的意义,它有了进一步的扩展,分数乘整数的意义包括两种情况:
(1)同整数乘法的意义相同,即求相同加数的和的简便运算。
(2)是求一个整数的几分之几是多少。
2、分数乘整数的计算方法:(1)分母不变,分子和整数相乘的积作分子;(2)能约分的最好先约分。
3、打折的含义,例如:九折,是指现价是原价的 。
4、分数乘分数的计算方法:分子相乘做分子,分母相乘做分母,能约分的最好先约分。计算结果必是最简分数。
5、比较分数相乘的积与每一个乘数的大小:
(1)真分数相乘:积小于每个乘数;
(2)真分数与假分数相乘:积大于真分数,小于假分数。
例如:教室里男生人数是总数的:把教室里的总人数当作单位“1”;
教室里男生人数占女生人数的:把教室里的女生人数当作单位“1”;
注意:要找出被当作单位“1”的量,必须首先找到“关键句”,就是有“分率(后面没带有单位的几分之几)”的句子。这样的句子结构往往是:谁“占”(或“是”、“相当于”、“正好”等)谁的几分之几,其中“的几分之几”左边的“谁”就是单位“1”。因此,这个方法可以简单概括为:找单位“1”就是看“的”字左边的量。