【题目】某次数学单元测试,七年级第一小组共10名同学,小组长把超过班级平均分的部分记为“+”,不足的部分记为“-”,记录如表:
与平均分的差值(分)
-15
-9
+3
+12
+17
人数
根据表格数据解答下列问题:
(1)第一小组同学的平均分比班级平均分高还是低?高或低多少分?
(2)若该班这次测试的平均分为80分,求第一小组10名同学的总分.
【答案】(1)高,2.6;(2)826
【解析】
(1)根据表格由加权平均数公式可得第一小组同学的平均分比班级平均分高还是低;(2)先用80乘以10,再加上高或低的分数即可求解.
故答案为:(1)高,2.6;(2)826
【题目】(10分)如图,小明在大楼的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,已知该山坡的坡角∠ABC=30°点P、H、B、C、A在同一个平面上.点H、B、C在同一条直线上,且PH⊥HC.
(1)山坡AB的坡度为 ;
(2)若山坡AB的长为20米,求大楼的窗口P处距离地面的高度.
备用图
【题目】己知图甲是一个长为2m、宽为2n的长方形,沿图甲中虚线用剪刀均匀分成四小块长方形,然后按图乙的形状拼成一个正方形.
(1)图乙中阴影部分正方形的边长为________(用含字母m,n的整式表示).
(2)请用两种不同的方法求图乙中阴影部分的面积.
方法一:________________;
方法二:________________.
某天,王红从玉符河站开始乘坐地铁,在地铁各站点做志配者服务,到A站下车时,本次志照者服务活动结束,约定向工研院站方向为正,当天的乘车记录如下(单位;站):+3、-2、-6、+7、-5、+3、+6.
(1)请通过计算说明A站是哪一站?
(2)若相邻两站之间的距离为3千米,求这次王红志照服务期间乘坐地铁行进的路程是多少千米?
【题目】有一个四棱柱,
(1)若它的底面边长都是5cm,所有侧面的面积和是40cm,那么它的侧棱长是多少?
(2)若它的所有棱都相等,且所有棱长之和为60cm,那么它的形状是什么?它的体积是多少?
(3)若它的底面是等腰梯形,上下底边长分别为2cm,8cm,腰长为5cm,高是4cm,它的侧棱长是底面周长的一半,求该四棱柱的体积.
【题目】阅读理解:如图1,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.解决问题:
(1)如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;
(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个强相似点E;
拓展探究:
(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系.
【题目】如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.
(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1__ __S2+S3;(填“>”“=”或“<”)
(2)写出图中的三对相似三角形,并选择其中一对进行证明.
【题目】(本小题满分8分)如图,点E、F为线段BD的两个三等分点,四边形AECF是菱形.
(1)试判断四边形ABCD的形状,并加以证明;
(2)若菱形AECF的周长为20,BD为24,试求四边形ABCD的面积.