初中数学套经典几何证明题(含答案)

开通VIP,畅享免费电子书等14项超值服

首页

好书

留言交流

下载APP

联系客服

经典题(一)

1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.

求证:CD=GF.(初二)

2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.

求证:△PBC是正三角形.(初二)

3、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点.

求证:四边形A2B2C2D2是正方形.(初二)

4、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.

求证:∠DEN=∠F.

经典题(二)

1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.

(1)求证:AH=2OM;

(2)若∠BAC=600,求证:AH=AO.(初二)

2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.

求证:AP=AQ.(初二)

3、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:

设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MN于P、Q.

求证:AP=AQ.(初二)

4、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE和正方形CBFG,点P是EF的中点.

求证:点P到边AB的距离等于AB的一半.(初二)

经典题(三)

1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.

求证:CE=CF.(初二)

2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F.

求证:AE=AF.(初二)

3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.

求证:PA=PF.(初二)

4、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD.(初三)

经典题(四)

1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.

求:∠APB的度数.(初二)

2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.

求证:∠PAB=∠PCB.(初二)

3、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.(初三)

4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且

AE=CF.求证:∠DPA=∠DPC.(初二)

启蒙、小学、初中、‮中高‬各科【高‮提效‬分资料】(单元测试、试卷、‮难重‬点、‮错易‬点、知‮汇识‬总、课‮教件‬案等等)各‮各科‬年‮各级‬个版本都有!【加入会员群随意下载,永久有效】【会员群需要💰,但也不贵】

启蒙、小学、初中、‮中高‬各科【高‮提效‬分资料】(单元测试、试卷、‮难重‬点、‮错易‬点、知‮汇识‬总、课‮教件‬案等等)各‮各科‬年‮各级‬个版本都有!

THE END
0.中考数学复习:10道经典几何题练习,含解题思路!10道经典几何题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题jvzquC41yy}/5?5fqe4dp8ftvkimg88828<16h62;4<76=850jznn
1.初中数学:经典几何难题20例(附答案),难倒80%的大学生!因此,对于很多中学生而言,几何是一个大难点,也是他们学习数学的一大痛点。很多同学学起几何来感觉非常枯燥,除了刷题还是刷题,而且一旦做题时卡住了,就卡半天,怎么想都想不出来。 今天我就给大家总结一下20例经典几何难题,这些也都是今后考试中会经常出现的经典题型,只要勤加练习,总结做题方法,触类旁通,举一反三,jvzquC41yy}/5?5fqe4dp8ftvkimg89885=:7h;839=65<50jvsm